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Abstract—Large Rayleigh number thermal convection in a horizontal, eccentric annulus containing a

saturated porous medium is studied using a boundary-layer technique. The results include a description of the

flow and temperature fields as well as a correlation for the Nusselt number as a function of the Rayleigh

number, the radii ratio and the eccentricity. The latter correlation is valid for all Rayleigh numbers as long as

the flow is two-dimensional, bicellular, and steady. The results obtained here are compared and favorably
agree with numerical simulations and with experimental data.

1. INTRODUCTION

Buoyancy-induced convection in porous media is
germane to many technologies involving thermal
insulators such as steam lines, gas lines in gas-cooled
nuclear reactors, cryogenics, and storage of thermal
energy. The thermal insulator typically consists of a
fibrous material, which is permeable to fluid motion.
Consequently, natural convection may develop in the
insulating material. Caltagirone [1], Burns and Tien
[2], Brailovskaya et al. [3], and others have
demonstrated that the convective mode contributes
significantly to the heat transfer process. Recently, Bau
[4, 5] and Bau et al. [6] showed that under certain
conditions eccentric insulators may be more eco-
nomical than the commonly used concentric ones. The
eccentric insulators may be more efficient than the
concentric ones since the heat transfer in the insulation
consists of both natural convection and conduction. An
increase in the eccentricity, such that the center of the
inner, hotter cylinder is above the center of the outer
one, reduces the effective Rayleigh number and
therefore the impact of the convective heat transfer. On
the other hand, the resulting reduction in the local
thickness of the insulation may increase the conductive
heat losses. Hence, one may expect that an optimal
value of eccentricity exists with which the heat losses are
minimized.

In refs. [4] and [5], Bau used a regular perturbation
expansion to solve analytically the Darcy—Oberbeck—
Boussinesq equations and to construct a relationship
between the Nusselt and Rayleigh numbers. The
resulting series had a limited radius of convergence.
Consequently, the results were limited to low Rayleigh
numbers. The range of utility of the series was extended
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to moderate Rayleigh numbers [5] using a variety of
non-linear transformations. In ref. [6], the same
problem was solved numerically, and the theoretical
calculations were confirmed qualitatively through
comparison with flow visualization experiments. The
numerical scheme becomes unstable, however, for large
values of the Rayleigh number.

From theforegoing, itis apparent that the problem of
large Rayleigh number convection in an eccentric
annulus has not been resolved as yet. The objective of
this manuscript is to procure a description of the flow
and temperature fields as well as a relationship between
the Nusselt and the Rayleigh numbers for large
Rayleigh number flow. To this end, we use boundary-
layer theory. The annulus is divided into boundary
layer and core regions, and the governing equations are
simplified accordingly. The boundary-layer equations
are solved using an integral technique. The procedure
used here is similar to the ones devised by Simpkins and
Blythe for a rectangular cavity containing Newtonian
fluid [7] and porous media [8], and Jischke and
Farshchi [9] for a horizontal, concentric annulus
containing Newtonian fluid. The temperature and flow
fields so obtained are compared with numerical
solutions. The results also are used to construct a
correlation between the Nusselt and the Rayleigh
numbers which is valid for all Rayleigh numbers.

2. MATHEMATICAL MODEL

Consider a saturated porous medium confined
between two eccentric cylinders of radii r; and r, > r;
(Fig. 1). The line connecting the center of the two
cylinders is parallel to the gravity vector (—gé,). The
distance between the cylinders’ centers (the eccentricity,
e) is denoted as positive when the center of the inner
cylinder is above the center of the outer cylinder. The
cylinders’ surfaces are impermeable and maintained at
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a, b numerical constants

d  characteristic dimension of the porous
medium

e  eccentricity

€, unit vector in the horizontal direction

€, unit vector in the vertical direction

g  gravitational acceleration

k  equivalent thermal conductivity of the
saturated porous medium

i unit vector normal to the surface

Nug;  Nusselt number predicted by boundary-
layer theory, equation (29)

Nu Nusselt number

p  pressure

Pr Prandtl number, v/a

Q. conductive heat flow in the absence of

convection
0, total heat flow
r  radius

R the radii ratio, r,/r;

Ra Darcy—Rayleigh number, AgB(T, — T,)r;/(va)
Re Reynolds number

T temperature

u, velocity scale, gf(T,— T,)A/v

velocity

horizontal coordinate

coordinate along the cylinder’s axis
vertical coordinate.

(ST I -

NOMENCLATURE

Greek symbols
o equivalent thermal diffusivity of the
porous medium
B thermal expansion coefficient of the
saturating fluid
A thickness of the boundary layer
# nondimensional temperature,
(T-TYT-T)
permeability
fluid viscosity
kinematic viscosity of the saturating fluid
stretched coordinate
azimuthal coordinate
streamfunction.

A A

Subscripts
¢ core variable
i inner cylinder (also, inner boundary-layer
variables)
o outer cylinder (also, outer boundary-layer
variables)
plume variables
radial velocity
angular component
horizontal component
vertical component
CL centerline

N ST

constant uniform temperatures, T, and T, < T,
respectively. As a result of the above temperature
difference, fluid motion is induced in the medium.

We assume that the fluid motion can adequately be
described by steady, two-dimensional, Darcy-
Oberbeck-Boussinesq (DOB) equations. The range of
validity of the above assumptions is discussed later in
the paper. The DOB equations, written in non-
dimensional form, are

Vev=0 (1a)
v=—Vp+0e, (1b)
Rav-V0 = V2§ (1)

where the Darcy-Rayleigh number Ra = gf(T,—
T)Ary/va; the velocity scale u, = gB(T,— T,)A/v; the
pressure scale is uu.r;/A; the temperature 6 = (T—
T)(T,— T.); the length scale is r;; v is the Darcian
velocity; p is the pressure deviation from the
hydrostatic pressure; and €, is a unit vector in the
vertical direction. The significance of the other symbols
is given in the Nomenclature.
The corresponding boundary conditions are

on the inner surface (r = 1)

@

0=1 v-n
0= v

=0
0 =0

=

on the outer surface (r = R)

and the symmetry condition at the vertical axis (x = 0,
Fig. 1) is

00
—=v,=0.
ox
Intheabove, R = r /r;istheradiiratio,and fnis a unit
vector normal to the cylinders’ surfaces.

0 t———

&t

To

F1G. 1. The geometrical configuration.
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In this paper we discuss explicitly the case of the inner
cylinder being hotter than the outer one (T; > T,). The
formulation as well as the results also apply to the case
of the inner cylinder being colder than the outer one
(T, < T.). In the latter case, the eccentricity will be de-
noted as positive if the center of the inner cylinder is
below the center of the outer cylinder.

3. BOUNDARY-LAYER FORMULATION

Experimental observations as well as numerical
simulations [6] suggest that, for high Rayleigh
numbers, the fluid flow domain can be divided into five
regions (Fig. 2).

(i) Inner boundarylayer:athinthermallayer near the
inner cylinder in which gradients in the azimuthal
direction are negligible compared to those in the
radial direction.

(i) Outer boundary layer: another very thin thermal

layer near the outer cylinder.

Plume : exists along the vertical line of symmetry

above the inner cylinder and joins the inner and

outer thermal layers. (The inner boundary
refurnishes the outer one through the plume.)

(iv) Stagnant region: a region, located beneath the
inner cylinder, in which the buoyancy forces
inhibit fluid motion and heat transfer takes place
largely by conduction.

(v) Coreregion: which is bounded by the other four
regions described above. The outer boundary
layer empties into the inner one through the core
region.

(iii)

A similar classification of the various flow regions
was done by Jischke and Farshchi [9] for the case of a
concentric annulus containing a Newtonian fluid.

We find it convenient to analyze the various regions
mentioned above by using local coordinate systems

Stagnant
region

F1G. 2. The flow field (LHS) and the temperature field (RHS) as
obtained from a finite-difference numerical simulation for a
concentric annulus of radii ratio R = 2 and Ra = 1000. The
heavy dashed lines indicate the division into the various flow
regimes employed in the boundary-layer analysis.

(Fig. 1), i.e. radial coordinates for the inner and outer
boundary layers and Cartesian coordinates for the
plume and the core regions. First, we estimate the
thickness of the boundary layers to be O(Ra ™ '/2)so that
convection is balanced by radial conduction. The
above is true for both the inner and outer boundary
layers as long as the radii ratio R is not too large. The
velocity attains its largest value in the boundary layer,
where according to the momentum equation, the
angular velocity is O(1).

Next, we simplify the governing equations (1) for the
asymptotic limit of large Rayleigh numbers.

(i) The core region

Since the azimuthal velocity in the boundary layer is
O(1), the continuity equation suggests that the
entrainment velocity should be O(Ra™'/?). The core
empties the outer boundary layer and fills the inner one
with fluid. Consequently, the core velocity should also
be O(Ra™'/?). Next, we denote the core variables with
subscript c and retain terms of O(1) only. The governing
equations (1) assume the following form:

Voo, =0 (3a)
Vp. = 0.8, (3b)
v.rV0, =0 (30)

where all the variables v, = Ra'?v,p, = pand 6, =
are O(1).

Taking a curl of the core-momentum equation (3b)
we obtain:

curl (6.¢,) = %ﬂ é,=0 )
X

where x is the horizontal coordinate, and y is parallel to
the cylinders’ axis. Thus, we conclude that 8, = 0.(z),i.c.
the core is stratified. From the core energy equation
(3¢), we conclude that the vertical component of the
core velocity is zero, i.e.

Vo = Vg x€s )

Further, the continuity equation (3a) suggests that
0v,,,/0x = 0, which implies that the horizontal velocity
is a function of the vertical coordinate only [ie. v, , =
v, «(2)]. Thus when the Rayleigh number approaches
infinity, the core velocity field, in the first approxim-
ation, is horizontal, and so are the streamlines,
= Ra'). This agrees well with the experimental
observations and the numerical simulations ([6] and
Fig. 2).

(ii) The inner boundary layer

When we analyze the inner boundary layer, we
employ a local, cylindrical coordinate system centered
at the center of the inner cylinder. Further, we rescale
the various variables so that all variables in the inner
boundary layer are O(1l). The inner boundary layer
variables are denoted with a subscript i. The boundary-
layer coordinate normal to the inner cylinder’s surface
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& = Ra'?(r — 1), the radial velocity u; , = Ra'’?u,, and
the streamfunction s, = Ra'/?y.

Next, we substitute the boundary-layer variables
into the governing equations and retain terms of O(1)
only to obtain:

ou Oy
op .
W4 =— % + 0, sin ¢; (6b)
op
0=— 5-6, (6¢)
00, 20, 8%,
“*"a—é,. +ui,¢a»$i— PR (6d)

The momentum equation in the &; direction (6¢c)
suggests that the pressure inside the boundary layer is
the same as the pressure in the core region.
Consequently,

U ¢ = (0;—8,) sin ¢; M
The corresponding boundary conditions are:
=0 u,=0 6;=1
®)
(oo u,—0 0,00,

(iii) The outer boundary layer

In analyzing the outer boundary layer, we employ a
cylindrical coordinate system centered at the center of
the outer cylinder. The analysis proceeds along similar
lines to that carried out for the inner boundary layer.
The resulting equations are:

Ju . 1 Oug g
-2 =0 9

3, TR 09, Ge)
uo.dz = (90— 0(:) sin ¢o (9b)

00, u, 4 06, 0%6,
e, R Gp” 0@ o9

with the boundary conditions
=0 =0,=0

éo uo,r o (10)

fo—'OO u°,¢—+0, 90—’60‘

In the above, subscript o denotes variables associated
with the outer boundary layer. The coordinate nor-
mal to the surface ¢, = Ra"*(R—r), u,, = —Ra'*u,
and ¥, = RaV%y.

(iv) The plume

According to experimental observations and
numerical simulations [6], the inner boundary layer
fills the outer one with fluid through a plume centered
on the vertical axis above the inner cylinder. The plume
is relatively thin and one may expect that the gradients
inthe horizontal direction are much larger than thosein
the vertical direction.

For convenience, we employ, in the plume region, a
Cartesian coordinate system (x, z). Considerations of
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mass conservation dictate that the thickness of the
plume should be the same as the thickness of the
boundarylayer,i.e. O(Ra ™ !/?). We proceed by rescaling
the various variables so as to bring them to O(1). The
plume variables are denoted with subscript p. Thus,
the horizontal variable ¢, = Ra'/?x, u, , = Ra'?u,,
U, , = U, ¥, = Ra'’*y, etc. Next, we substitute the re-
scaled terms of O(1) to obtain:

Ouy . Ou,,
. —— =0 11
a2, o, (1a)
u, . =(0,—0) (11b)
o0, a0, %0,
A i 1
Moxge Tl TR (1o
with the boundary conditions
0 a0
£,=0 up.x=%=5é_"=
P P (12)

fp—’OO up'z—>0, 0p—>9c.

(v) The stagnant region
In the first-order theory presented here the stagnant
region does not play any role.

4. SOLUTION PROCEDURES

In the previous section, we derived simplified
governing equations for each of the flow regimes. These
equations are coupled and none of them can be solved
independently. An approximate solution can be
devised using an integral technique [7-97]. We proceed
by first deriving the integral form of the conservation
equations in the various regimes. Next, we assume
various shapes of velocity and temperature profiles in
the boundary layers and the plume. These profiles are
required to satisfy both the boundary conditions and
the conservation laws in their integral form. That is, in
effect, we convert the integro-differential equations into
ordinary differential equations, which can beintegrated
with relative ease.

(i) Inner boundary layer
The integrated inner boundary-layer equations have
the form:

Y= on ;548 = Jw (6, —06.)sin ¢; d¢;  (13a)

0 0
d
do,

. 0. _ (46
J; (6;—8.)° sin ¢; déi_H//cd(bi B <dfi>§i=0
(13b)

We assume that the temperature profile can
adequately be described by:

& ]

6;— 0, = A iFi[——’ B (14)
PP 8o

where A(¢;) measures the thickness of the inner

boundary layer and F;({) describes the shape of the
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velocity profile. Substitution of (14) into (13) yields:
de,

d _ 2
begg gy Wl —001= (b1 —0 sin 6p.
(15)
where
(e, _F©O
"“E@L RO 0}
g, 2
Ai(d’i) - F](o) ? and Al(¢l) N H_—ec)m

The form of A,(¢;) above ensures that equation (14)
satisfies the boundary condition, § = 1, at the inner
cylinder’s surface.

The function Fi({) is required to satisfy the nor-
malization condition L‘f F,({)d{ = 1;theboundary con-
ditions at infinity, F(o0) = Fi(o0) = F{(c0) = -+ =0;
and those at the inner cylinder’s surface, F{(0) = 0.

(ii) Quter boundary layer

In analyzing the outer boundary layer, we employ a
technique similar to the one employed in the inner
boundary layer to obtain:

do, d . 02R sin ¢,
/8 d‘ffTo —4, d¢h; [64.]=—b, T, (16)
with
_ i . _ F(0)
a, = F.0) L FX0)d{ and b, = F20)

The function F({) is required to satisfy similar
conditions to those satisfied by F({).

(iti) Plume
The integral form of the conservation equations (11)
is

Yo = J U, dg, = f 0,—0.d¢,
0 o
d ®

dz, Jo

de,

[\
dz,

v

(6,—0)dé, =0. (17
We assume that the temperature profile can be
approximated in the form

0,— 0. = A,(z,)G[—&,/A(z,)] (18)

where A, (z,) measures the half-width of the plume.
Substitution of (18) into (17) leads to

do d
- — O0c.—6.)]1=0 19
l//c de + ap de [l/lc( CL c)] ( )
where 0, is the temperature at the axis (£, = 0). Note
that a new variable (0, ) is introduced in equation (19).
Consequently, an additional equation is needed. To
this end, we substitute (18) into equation (11¢), which
was evaluated at £, = 0, to obtain
df, (L —0.)°
b =0
&, Py

P

(20)

HMT 29:5-D

where

1 @ 4
“ = G0 L GX{)d(, b, =—G"(0)/G*0).

Aglzp) = GOW /(B —0.),
and
Ap(zp) = (BCL‘ Oc)/G(O)

The function G({) satisfies the normalization condition
{0 G({)dl =1 and the boundary conditions G'(0)
= G"(0) = 0, G(0) = G'(0) = G""(0) = --- = 0.

Initial and matching conditions

Before we proceed any further, it is convenient to
rewrite the equations in terms of the global vertical
coordinate z. For the inner and outer cylinders, z =
—cos ¢; and z =—R cos ¢,—e, respectively. Thus
equations (15) and (16) become:

49, d b(1—86,)
e e S -6y = -0
!//c dZ + al dz [‘/IC(I C)] wc
_1<z<1 @1
v de, d [V.0.]=—bh 6?2
°dz _a°dz el T Ty
_1<z<R—e (22)

In order to integrate equations (19)}+22), adequate
initial conditions need to be specified. The continuity of
temperature and streamfunction require that

Y.=0.=0 at z=—1

This initial condition is of little use since equations (21)
and (22) are singular at z = — 1. Asymptotic analysis
reveals that

bi 1z 1/2[
w°~<_2a~> (I+2) for z——1% (23)

i

T; ~ C!//gl/(l—ai)

where C is an arbitrary constant. With some loss of
generality, we assume in the above that a; = a, and
b; = b,. Thus, by selecting a value for C, one can
simultaneously integrate equations (21) and (22) for
—1 < z < 1. We shall specify later how C should be
selected.

Intheregion 1 < z < R—e,equation (21)is replaced
with equations (19) and (20). The previous solutions of
(21) and (22) provide the values of Y, and 6, at z = 1.
However, since a new variable, 0, is introduced, an
additional initial condition is needed. The value of 6,
at z = 1 is determined by requiring that the thermal
energy carried by the inner boundary layer at z = 1~
will be equal to that carried by the plumeatz = 17, i.e.

r o6 — 0 &, = r up (0, — 00 dE,. (24)
0

0
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In terms of the corresponding temperature profiles, we
obtain

Oz =1%) = 4 +<1— &> 0(z=17). (25
an ap

At this point, the equations can be integrated for any
given value of C. In order to determine the value of C,
we require that the point at which the plume intercepts
the outer surface be a stagnation point. That is,

u,,=0 or z=R—e.

X 0o =0, at (26)

Thus, the solution strategy for a given radii ratio (R)
and eccentricity (e) is to select C, integrate the
equations, obtain the value of u, , at z = R—e, and, if
that is not zero, change the guess for C and keep
iterating until u, , (z = R—e) = 0 is satisfied. Alterna-
tively, one may choose C, integrate the equa-
tions until the point at which u, , = 0, and find the
corresponding R —e. Note that R and e do not appear
independently, but only as the combination (R —e).

The heat transfer

Once the equations are solved, the heat flux and the
total heat flow can be readily calculated. The total heat
flow (Q,) can be expressed as:

1 (1 —9 )2
0, = 2Ra”2j -
' -1 l//c
The conductive heat flow (Q.), in the absence of
convection, is

dz. 27

m+./(m*—1)

-1
(m*—1)+./(m*+R*— 1)]
(28)

Q.=2n [log R+log
N

where m = (R? —e? —1)/2¢. Consequently, the Nusselt
number (Nug, j predicted by the boundary-layer theory
1s:

Nug, = Q,/Q.

The velocity and temperature profiles

In our calculations, we employ similar functions for
‘the temperature profilein theinner and outer boundary
layers, ie. F; = F, = F. The various profiles used and
the corresponding values of the constants q¢; = a, = a

(29)
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and b, = b, = b are given in Table 1. Additionally, we
calculate Q, for the special case of R — oc. The latter
corresponds to the case of a cylinder imbedded in an
infinite porous medium. This caseis singled out both for
its practical importance and for the availability of
approximate solutions in the literature [ 10] with which
we can compare our results, For example, Cheng [10]
calculated the heat flow associated with a cylinder
imbedded in an infinite medium. By neglecting the
radial component of the gravity vector, he was able to
construct a similarity solution. His result is quoted as
the last entry in Table 1.

Asisevident from Table 1, the actual valuesof aand b
are not very sensitive to the selection of a specific profile
F.The exponential profile F({) = exp (—{) leads to the
best agreement with Cheng’s [10] solution and
therefore it was used in our subsequent calculations.

For the plume, we use the profile [9]:

2
G(&,) = ——cos (&) exp [0.25—£2]

Jr

which results in a, = 0.7293 and b, = 1.4291.

(30)

The numerical integration

Equations (19)22) are integrated using a fourth-
order accurate Runge-Kutta technique. As we in-
dicated earlier, we start the integration process by
guessing the value of C and subsequently calculating
the location (R — e) at which plume velocity terminates.
The integration procedure cannot startatz = — 1 since
equations (21) and (22) have a singularity there.
Consequently, the integration should begin at the point
z=—1+¢, where ¢>0 is typically taken to be
4 x 10, Sensitivity analysis reveals that the end resuit
is not affected when ¢ is varied by as much as two orders
of magnitude.

The results of the computations are summarized in
Fig. 3 where C is depicted as a function of (R—e).

5. RESULTS AND DISCUSSION

5.1. Temperature and velocity fields
The core temperature (8,.) and streamfunction ()
are depicted in Figs. 4 and 5 as functions of the vertical

Table 1. Values of g, band Q,(R — o0) obtained for various temperature profiles

F(QQ)
FO a b 9t Row
JRa

1. exp(~10) 0.5 -1 2.828
2. 42+ exp (=0 0.5417 —0.75 3.399
3. Two-layer profile [8] 0.5376 —1.7232 3.448

§—%{+&03 01

Frexp(—(+1) {>1
4. Ref. [10] — — 2,513
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F16. 3. The variation of the constant C as a function of (R —e).

coordinate (z) for a concentric annulus (e = 0) with
radii ratio R = 2. The solid lines represent the results
obtained by integrating equations (19){22). The
dashed lines represent the asymptotic solution for
z - —1" [equation (23)], and the symbols represent
the finite-difference numerical solution of the DOB
equations (1) for Ra = 1000 [6]. Note the qualitatively
good agreement between the boundary-layer solution
(solid lines) and the numerical simulation (symbols).
The core streamfunction (Fig. 4) starts from a zero value

at z = —1, attains a maximum at about z = 0.5, and
decreases back to zero at z= R =2. The core
temperature 8, (Fig. 5) starts from zero at z = —1 and

increases monotonically with z. Atz = R = 2, it attains
the same value as the plume’s centerline temperature.

O —
- -

0.75 [ o]
8; I > ]
0.5 [ }

[ = ]
05 & h

[ 7 ]

K NS T PN PN B B
40 -05 00 05 {0 15 2.0

1

F1G. 4. The variation of the core temperature (6.) as a function
of the vertical coordinate z for a concentric annulus with radii
ratio R = 2. The solid line corresponds to the boundary-layer
solution, the dashed line represents the asymptotic solution
valid for z - — 1%, and the symbols are the results of a finite-
difference numerical simulation for Ra = 1000.
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FiG. 5. The variation of the core stream function () as a

function of the vertical coordinate (z) for a concentric annulus

of radii ratio R =2. The solid lines correspond to the

boundary-layer solution, the dashed lines represent the

asymptotic solution valid for z - — 17, and the symbols are

the results of a finite difference numerical simulation for
Ra = 1000.

The core temperature (§,) never reaches the
temperature (6 = 0) of the outer surface.

We note in passing that an exact relationship
between Y, and 6, can be obtained for —1 <z < 1in

the form
CyYd =2 = 6.(1-6,). (31

Equation(31)isinexcellent agreement (not shown here)
with theresults depicted in Figs.4and 5. Wedid notfind
an explicit analytical solution for 8, = 8,(z) and
Y. = Y(2) for general values of a and b.

5.2. Heat transfer

Next, we use the boundary-layer theory in order to
calculate the Nusselt number Nuy; as a function of the
Rayleigh number [equation (29)]. The results are
depicted as dashed lines in Figs. 6-9. In Fig. 6, we show
the results for a concentric annulus with radii ratios
R =244 212 3 4 and 16. The symbols represent the
results of a finite-difference numerical simulation [1].
The agreement between the boundary-layer theory and
the numerical simulation is very good for Nug, > 1.4.
In Fig. 7, we compare the Nuy, with experimental data
obtained by Caltagirone [ 1] for a concentric annulus of
radiiratio R = 2. Notethe good agreement between the
boundary-layer theory and the experimental observa-
tions for 1.4 < Nug; < 2. For higher values of the
Nusselt number, the deviation between the experi-
mental data and the theoretical results increases. The
reason for this deviation will be discussed in the next
section.

In Figs. 8 and 9 we depict the Nusselt number as a
function of the Rayleigh number for eccentric annuli
with positive and negative eccentricities, respectively.
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Nu

100 1000 5000
Ra

FiG. 6. The Nusselt number (Nu) depicted as a function of the
Rayleigh number (Ra) for a concentric annulus of radii ratios
R =214 212 2 4 and 16. The solid line represents the
uniformly valid correlation [equation (33)], the dashed line
corresponds to the results of the boundary-layer theory, and
the symbols represent numerical data from ref. [1]. The
shaded area corresponds to a region in which the flow is not
two-dimensional.

The various symbols are the results of two-
dimensional, finite-difference numerical simulation
[6]. The agreement between the boundary-layer theory
and the numerical simulation is very good for |e| < 0.6.
As the eccentricity increases, however, the numerical
data starts deviating from the boundary-layer results.
Note that for |e| > 0.6, the gap between the outer and
inner cylinders becomes very small. Thus, the deviation
between the numerical simulation [6] and the
boundary-layer theory may be attributed to the fact

Ty Ty T T TTIAT

+

Nu

111

1 L
1 100 1000

FiG. 7. The Nusselt number (Nu) as a function of the Rayleigh

number (Ra) for a concentric annulus of radii ratio R = 2. The

solid and dashed lines represent respectively the uniform

correlation (33) and the boundary-layer theory. The symbols
represent experimental data [1].
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FIG. 8. The Nusselt number (Nu) as a function of the Rayleigh

number (Ra) for an eccentric annulus of radii ratio R = 2 and

eccentricity e = 0.2,0.4,0.6 and 0.8. The solid and dashed lines

represent, respectively, the uniformly valid correlation (33)

and the boundary-layer theory. The symbols represent
numerical solution [6].

that the Rayleigh numbers for which we possess
numerical data [6] are not sufficiently large to ensure
distinct inner and outer layers.

The results obtained for the boundary-layer theory
and the results of the numerical simulation were used to
construct a correlation for the heat flow Q, in the form:

0, = 21 Ra'2{0.35—0.11 exp [~ 0.3%(R —e—1)1}.
(32)

The above value of Q, can be used to calculate Nuy, in
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FI1G. 9. The Nusselt number (Nu) as a function of the Rayleigh

number (Ra) for an eccentric annulus of radii ratio R = 2 and

eccentricities e = —0.2, —0.4, —0.6 and —0.8. The solid and

dashed lines represent, respectively, the unifcrmly valid

correlation (33) and the boundary-layer theory. The symbols
represent numerical solutions [6].
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accordance with equation (29). At this point, we possess
the asymptotic limits for the Nusselt number for large
and small Rayleigh numbers,i.e.as Ra — 0, Nu — 1 and
as Ra — o, Nu — Nuy, . Using a technique devised by
Churchill and Usagi [11], the above two limits can be
used to construct an approximation for all Rayleigh
numbers in the form:

Nu = (1 +Nu,6,{4'5“2)”‘6""522’. (33)
The results obtained using this correlation are depicted
by solid lines in Figs. 6-9. The deviation between (33)
and the numerical data is smaller than 8%/ for all the
cases examined.

6. THE RANGE OF VALIDITY
OF THE RESULTS

The theoretical results presented here are based on
the assumption that the flow is two-dimensional and
steady. This is the case only for certain values of the
Rayleigh number. Once a certain critical value of the
Rayleigh number is exceeded, the flow becomes three-
dimensional and oscillatory. For the case of the
concentric annulus, we use Caltagirone’s results (1] to
show the region (shaded) in Fig,. 6, in which the flow is
not two-dimensional. Unfortunately, similar data for
the eccentric annulus is not available yet. The
bifurcation into three-dimensional convection also
explains why beyond a certain Rayleigh number the
experimental data in Fig. 7 starts deviating from the
theoretical results. Clearly, correlation (33) is not valid
in the three-dimensional convective regime (shaded
area in Fig. 6). Nevertheless, the correlation (33) can
provide a lower bound for the heat transfer in the three-
dimensional flow regime.

Another matter of concern is the validity of the DOB
equations for large Rayleigh numbers. Darcy’s law is
considered to be valid for Reynolds numbers Re < 10,
where Re = a.d/v. In the foregoing equation, d is a
characteristic dimension of the porous media (i.e. pore
or particle diameter) and @, is the Darcian velocity.
In our case, the maximum velocity is attained in
the boundary layer and can be estimated from #, =
AgB(T;— T,) (1 —0,)/vF(0). Consequently, we conclude
that the DOB equations are valid for

Ra <20 Pr% (34)

where Pr is the Prandtl number. For example, in the

case of air (Pr ~ 0.7) and r;/d ~ 107, the DOB equa-
tions will be valid for Ra < 1400.

7. CONCLUSION

Aboundary-layer technique was used to solve for the
temperature and flow field as well as for the heat
transfer in an eccentric horizontal annulus containing
saturated porous media. The results agree favorably
with numerical simulations and with experimental
observations and enable us to construct a heat transfer
correlation which is valid in the range of validity of the
DOB equations and as long as the convective motion
remains two-dimensional, bicellular and steady.
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CONVECTION A GRAND NOMBRE DE RAYLEIGH DANS UN ESPACE ANNULAIRE
EXCENTRIQUE, HORIZONTAL ET CONTENANT UN MILIEU POREUX SATURE

Résumé—La convection thermique a grand nombre de Rayleigh dans un espace annulaire excentrique,

horizontal, contenant un milieu poreux saturé, est étudiée a I'aide d’une technique de couche limite. Les

résultats contiennent une description des champs d’écoulement et de température aussi bien qu’une expression

du nombre de Nusselt en fonction du nombre de Rayleigh, du rapport des rayons et de I'excentricité.

L’expression est valable pour tous les nombres de Rayleigh tant que I'écoulement est bidimensionnel,

bicellulaire et permanent. Les résultats obtenus ici sont comparés et ils s’accordent avec les solutions
numériques et avec les données expérimentales.

KONVEKTION BEI GROSSEN RAYLEIGH-ZAHLEN IN EINEM HORIZONTALEN,
EXZENTRISCHEN RINGRAUM, WELCHER GETRANKTE POROSE MEDIEN ENTHALT

Zusammenfassung— Die thermische Konvektion in einem waagerechten, exzentrischen Ringraum, weicher

ein durchtrinktes poréses Medium enthilt, wird mit Hilfe einer Grenzschicht-Technik fiir den Fall grofer

Rayleigh-Zahlen untersucht. Die Strdmungs- und Temperaturfelder werden beschrieben, auflerdem wird eine

Korrelation der Nusselt-Zahlin Abhiingigkeit von der Rayleigh-Zahl, vom Verhiltnis der Radien und von der

Exzentrizitit mitgeteilt. Letztere Korrelation ist fiir alle Rayleigh-Zahlen giiltig, solange die Strémung

zweidimensional, bizellular und stationir ist. Die vorgelegten Ergebnisse werden mit numerischen Simulatio-
neu und mit Versuchsdaten verglichen, wobei sich eine recht gute Ubereinstimmung ergibt.

KOHBEKLIMA MPU BOJIBIIUX YUCIAX PIJIES B 'OPM30OHTAJIBHOM
SKCLEHTPUUYECKOM KOJIBLIEBOM KAHAJIE, COJEPXXAIIEM HACBIIEHHYIO
MNOPUCTYIO CPEY

Annoranus—B le/l6.]'lH)KCHHH MOrpaHHYHOrO CJIoA H3Yy4aeTCd TEIUIOBAS KOHBEKUHS TIPHU BOJIbIIMX

yucnax Panes B FOPH3OHTAJIBHOM 3KCLEHTPHYECKOM KOJBLUECBOM KaHAJE, COACPXKALIEM HACBhILICHHYIO

MOPHUCTYIO Cpeay. Haiinens nons CKOPOCTH H TEMMEPATYPbl U BBIPAXCHHE AJ1A YHCIA Hyccemﬁa Kak

Q)yHKLlPH/I yucia Panes, oTHOWEHUS paaMyCOB U JKCHCHTPHCHTETA. VkazanHoe BBLIpaXCHHE CNIPABCIJIUBO

B TOM [HAIIA30HC YMUCEN P3ﬂeﬁ, B KOTOPOM TE¢HEHHUE ABJAECTCH ABYMEPHBIM, NBYXAYEHCTLIM H yCTOl‘;l‘{l/[-

BbIM. HOHy‘lCHHblC pe3yJibTaThl XOPOLIO COBNAAAI0T ¢ YHCIEHHLIMHA paciycTaMu U IKCNCPUMEHTAJIBHBIMH
JaHHBIMH.



