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Abstract-Large Rayleigh number thermal convection in a horizontal, eccentric annulus containing a 
saturated porous medium is studied using a boundary-layer technique. The results include a description of the 
flow and temperature fields as well as a correlation for the Nusselt number as a function of the Rayleigh 
number, the radii ratio and the eccentricity. The latter correlation is valid for all Rayleigh numbers as long as 
the flow is two-dimensional, bicellular, and steady. The results obtained here are compared and favorably 

agree with numerical simulations and with experimental data. 

1. INTRODUCTION 

BuoYANcY-induced convection in porous media is 
germane to many technologies involving thermal 
insulators such as steam lines, gas lines in gas-cooled 
nuclear reactors, cryogenics, and storage of thermal 
energy. The thermal insulator typically consists of a 
fibrous material, which is permeable to fluid motion. 
Consequently, natural convection may develop in the 
insulating material. Caltagirone Cl], Burns and Tien 
[2], Brailovskaya et al. [3], and others have 
demonstrated that the convective mode contributes 
significantly to the heat transfer process. Recently, Bau 
[4, 51 and Bau et al. [6] showed that under certain 
conditions eccentric insulators may be more eco- 
nomical than the commonly used concentric ones. The 
eccentric insulators may be more efficient than the 
concentric ones since the heat transfer in the insulation 
consists ofboth natural convection and conduction. An 
increase in the eccentricity, such that the center of the 
inner, hotter cylinder is above the center of the outer 
one, reduces the effective Rayleigh number and 
therefore the impact of the convective heat transfer. On 
the other hand, the resulting reduction in the local 
thickness of the insulation may increase the conductive 
heat losses. Hence, one may expect that an optimal 
valueofeccentricityexists with which the heat losses are 
minimized. 

In refs. [4] and [5], Bau used a regular perturbation 
expansion to solve analytically the Darcy-Oberbeck- 
Boussinesq equations and to construct a relationship 
between the Nusselt and Rayleigh numbers. The 
resulting series had a limited radius of convergence. 
Consequently, the results were limited to low Rayleigh 
numbers. The range of utility of the series was extended 
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to moderate Rayleigh numbers [S] using a variety of 
non-linear transformations. In ref. [6], the same 
problem was solved numerically, and the theoretical 
calculations were confirmed qualitatively through 
comparison with flow visualization experiments. The 
numerical scheme becomes unstable, however, for large 
values of the Rayleigh number. 

From theforegoing,it is apparent that the problem of 
large Rayleigh number convection in an eccentric 
annulus has not been resolved as yet. The objective of 
this manuscript is to procure a description of the flow 
and temperature fields as well as a relationship between 
the Nusselt and the Rayleigh numbers for large 
Rayleigh number flow. To this end, we use boundary- 
layer theory. The annulus is divided into boundary 
layer and core regions, and the governing equations are 
simplified accordingly. The boundary-layer equations 
are solved using an integral technique. The procedure 
used here is similar to the ones devised by Simpkins and 
Blythe for a rectangular cavity containing Newtonian 
fluid [7] and porous media [8], and Jischke and 
Farshchi [9] for a horizontal, concentric annulus 
containing Newtonian fluid. The temperature and flow 
fields so obtained are compared with numerical 
solutions. The results also are used to construct a 
correlation between the Nusselt and the Rayleigh 
numbers which is valid for all Rayleigh numbers. 

2. MATHEMATICAL MODEL 

Consider a saturated porous medium confined 
between two eccentric cylinders of radii ri and r, > ri 
(Fig. 1). The line connecting the center of the two 
cylinders is parallel to the gravity vector (-se,). The 
distance between the cylinders’centers (the eccentricity, 
e) is denoted as positive when the center of the inner 
cylinder is above the center of the outer cylinder. The 
cylinders’ surfaces are impermeable and maintained at 
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NOMENCLATURE 

a, b numerical constants Greek symbols 
d characteristic dimension of the porous u equivalent thermal diffusivity of the 

medium porous medium 
e eccentricity fl thermal expansion coefficient of the 

e, unit vector in the horizontal direction saturating fluid 

e, unit vector in the vertical direction A thickness of the boundary layer 

9 gravitational acceleration 0 nondimensional temperature, 
k equivalent thermal conductivity of the V- T,)/(T- T,) 

saturated porous medium 1 permeability 
d unit vector normal to the surface p fluid viscosity 

N%, Nusselt number predicted by boundary- kinematic viscosity of the saturating fluid 
layer theory, equation (29) ; stretched coordinate 

Nu Nusselt number azimuthal coordinate 

P pressure $ streamfunction. 
Pr Prandtl number, v/a 

Q, conductive heat flow in the absence of 
convection Subscripts 

Q, total heat flow C core variable 
r radius i inner cylinder (also, inner boundary-layer 
R the radii ratio, r,/ri variables) 
Ra Darcy-Rayleigh number, lgfi(T- TJrJ(va) o outer cylinder (also, outer boundary-layer 
Re Reynolds number variables) 
T temperature p plume variables 
u, velocity scale, g/I(T - T$/v r radial velocity 
V velocity 4 angular component 
X horizontal coordinate x horizontal component 

Y coordinate along the cylinder’s axis z vertical component 
Z vertical coordinate. CL centerline 

constant uniform temperatures, q and T, < q, and the symmetry condition at the vertical axis (x = 0, 
respectively. As a result of the above temperature Fig. 1) is 
difference, fluid motion is induced in the medium. 

We assume that the fluid motion can adequately be ae=, -0. 

described by steady, two-dimensional, Darcy- dx X - 

Oberbeck-Boussinesq (DOB) equations. The range of In the above, R = ro/ri is the radii ratio, and i is a unit 
validity of the above assumptions is discussed later in vector normal to the cvlinders’ surfaces. 
the paper. The DOB equations, 
dimensional form, are 

v-v=0 

written in non- 

(14 

v = -Vp+&, (lb) 

Rav- Vl3 = V% (14 

where the Darcy-Rayleigh number Ra = g/?(T,- 

TJhJva; the velocity scale u, = g/I(T,- T,)l/v; the 
pressure scale is pun/l; the temperature 0 = (T- 
T,)/( T- I”); the length scale is ri; v is the Darcian 
velocity ; p is the pressure deviation from the 
hydrostatic pressure; and eZ is a unit vector in the 
vertical direction. The significance of the other symbols 
is given in the Nomenclature. 

The corresponding boundary conditions are 

O=l v-d=0 on the inner surface (r = 1) 
(2) 

I 
9 

-X 

~ ’ e=o v-d=0 on the outer surface (r = R) FIG. 1. The geometrical configuration. 
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In this paper we discuss explicitly the case of the inner 

cylinder being hotter than the outer one (T > To). The 
formulation as well as the results also apply to the case 
of the inner cylinder being colder than the outer one 
(T < T,). In the latter case, the eccentricity will be de- 
noted as positive if the center of the inner cylinder is 
below the center of the outer cylinder. 

3. BOUNDARY-LAYER FORMULATION 

Experimental observations as well as numerical 

simulations [6] suggest that, for high Rayleigh 
numbers, the fluid flow domain can be divided into five 
regions (Fig. 2). 

(9 

(ii) 

(iii) 

(iv) 

(v) 

Inner boundary layer : a thin thermal layer near the 
inner cylinder in which gradients in the azimuthal 
direction are negligible compared to those in the 

radial direction. 
Outer boundary layer: another very thin thermal 
layer near the outer cylinder. 
Plume : exists along the vertical line of symmetry 

above the inner cylinder and joins the inner and 
outer thermal layers. (The inner boundary 
refurnishes the outer one through the plume.) 
Stagnant region: a region, located beneath the 
inner cylinder, in which the buoyancy forces 
inhibit fluid motion and heat transfer takes place 
largely by conduction. 
Core region : which is bounded by the other four 

regions described above. The outer boundary 
layer empties into the inner one through the core 
region. 

A similar classification of the various flow regions 
was done by Jischke and Farshchi [9] for the case of a 
concentric annulus containing a Newtonian fluid. 

We find it convenient to analyze the various regions 
mentioned above by using local coordinate systems 

Outer 
/boundary 

FIG. 2. The flow field (LHS) and the temperature field (RHS) as 
obtained from a finite-difference numerical simulation for a 
concentric annulus of radii ratio R = 2 and Ra = 1000. The 
heavy dashed lines indicate the division into the various flow 

regimes employed in the boundary-layer analysis. 

(Fig. l), i.e. radial coordinates for the inner and outer 
boundary layers and Cartesian coordinates for the 
plume and the core regions. First, we estimate the 
thickness of the boundary layers to be O(Ra- I”) so that 
convection is balanced by radial conduction. The 
above is true for both the inner and outer boundary 
layers as long as the radii ratio R is not too large. The 
velocity attains its largest value in the boundary layer, 
where according to the momentum equation, the 
angular velocity is 0( 1). 

Next, we simplify the governing equations (1) for the 
asymptotic limit of large Rayleigh numbers. 

(i) The core region 
Since the azimuthal velocity in the boundary layer is 

O(l), the continuity equation suggests that the 
entrainment velocity should be O(Ra-‘I’). The core 
empties the outer boundary layer and fills the inner one 
with fluid. Consequently, the core velocity should also 
be O(Ra- ‘/*). Next, we denote the core variables with 
subscript c and retain terms of 0( 1) only. The governing 
equations (1) assume the following form : 

v-v,=0 (34 

vp, = B&, (3’4 

v, * VB, = 0 (3c) 

where all the variables v, = Ra’12 v, pc = p and Bc = 0 
are 0( 1). 

Taking a curl of the core-momentum equation (3b) 
we obtain : 

curl (Q,&,) = 2 by = 0 (4) 

where x is the horizontal coordinate, and y is parallel to 
the cylinders’axis. Thus, we conclude that 8, = e,(z), i.e. 
the core is stratified. From the core energy equation 
(3c), we conclude that the vertical component of the 
core velocity is zero, i.e. 

v, = l&c,. (5) 

Further, the continuity equation (3a) suggests that 
au,,,/& = 0, which implies that the horizontal velocity 
is a function of the vertical coordinate only [i.e. v,,, = 
v,,,(z)]. Thus when the Rayleigh number approaches 
infinity, the core velocity field, in the first approxim- 
ation, is horizontal, and so are the streamlines, $, 
= Ra”*$. This agrees well with the experimental 
observations and the numerical simulations ([6] and 
Fig. 2). 

(ii) The inner boundary layer 
When we analyze the inner boundary layer, we 

employ a local, cylindrical coordinate system centered 
at the center of the inner cylinder. Further, we rescale 
the various variables so that all variables in the inner 
boundary layer are O(1). The inner boundary layer 
variables are denoted with a subscript i. The boundary- 
layer coordinate normal to the inner cylinder’s surface 
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& = Ra”‘(r - l), the radial velocity ui,r = Ru~%~, and 
the streamfunction I,!J~ = RLZ”~$. 

Next, we substitute the boundary-layer variables 
into the governing equations and retain terms of 0( 1) 
only to obtain : 

(64 
aui.r I aui,+ _ o 

Xi ah 

%O =-*+Qisin& 
adi 

ap 

O=-z 

ae. a2e. 2 +ui,4el =I 
%r agi a+i at;. 

(64 

(64 

The momentum equation in the ti direction (6~) 
suggests that the pressure inside the boundary layer is 
the same as the pressure in the core region. 
Consequently, 

u~,~ = (ei - e,) sin bi (7) 

The corresponding boundary conditions are : 

ti = 0 Ui,r = 0 ei = 1 

ti+ D3 ui,4 + 0 ei + e,. (8) 

(iii) The outer boundary layer 
In analyzing the outer boundary layer, we employ a 

cylindrical coordinate system centered at the center of 
the outer cylinder. The analysis proceeds along similar 
lines to that carried out for the inner boundary layer. 
The resulting equations are : 

with the boundary conditions 

5, = 0 u,,, = 8, = 0 

5,- 02 %@-+O, e, -+ ec. (10) 

In the above, subscript o denotes variables associated 
with the outer boundary layer. The coordinate nor- 
mal to the surface 4, = Ra”‘(R-r), IA,,, = -Ra”‘u, 
and $, = R&‘$. 

(iv) The plume 
According to experimental observations and 

numerical simulations [6], the inner boundary layer 
fills the outer one with fluid through a plume centered 
on the vertical axis above the inner cylinder. The plume 
is relatively thin and one may expect that the gradients 
in the horizontal direction are much larger than those in 
the vertical direction. 

d m 
-J (6i-0,)‘sin4idE,+tj,$ =- 
d4i 0 

(13b) 

We assume that the temperature profile can 
adequately be described by : 

4 - 0, = Ai(4i)Fi 
5i 

i 1 m 

For convenience, we employ, in the plume region, a where Ai measures the thickness of the inner 
Cartesian coordinate system (x, z). Considerations of boundary layer and F,(i) describes the shape of the 

mass conservation dictate that the thickness of the 
plume should be the same as the thickness of the 
boundary layer, i.e. O(Ra- ‘I’). We proceed by resealing 
the various variables so as to bring them to O(1). The 
plume variables are denoted with subscript p. Thus, 
the horizontal variable L$, = Ra”‘x, uP,x = Ru~~*u,, 

%*z = uz, $P = Ra”‘$, etc. Next, we substitute the re- 
scaled terms of O(1) to obtain : 

au au PI= - hX I 
a<, 82, 

0 (114 

Up,r = (@,-4) (11’4 

ae 
‘pxx at, 

ao, _ a28 
L+u _A 

psz aZp at; 
(1 lc) 

with the boundary conditions 

5,=0 up,x2p&o 
P P 

(12) 
rp-+ co up,z+o, 8, + 8,. 

(v) The stagnant region 
In the first-order theory presented here the stagnant 

region does not play any role. 

4. SOLUTION PROCEDURES 

In the previous section, we derived simplified 
governing equations for each of the flow regimes. These 
equations are coupled and none of them can be solved 
independently. An approximate solution can be 
devised using an integral technique [7-91. We proceed 
by first deriving the integral form of the conservation 
equations in the various regimes. Next, we assume 
various shapes of velocity and temperature profiles in 
the boundary layers and the plume. These profiles are 
required to satisfy both the boundary conditions and 
the conservation laws in their integral form. That is, in 
effect, we convert the integro-differential equations into 
ordinary differential equations, which can be integrated 
with relative ease. 

(i) Inner boundary layer 
The integrated inner boundary-layer equations have 

the form : 

tic=J:ui,$dSi=[: (0,-e,) sin &+ d& (13a) 
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velocity profile. Substitution of (14) into (13) yields : 

where 

1 m 

s 

E(O) 

ai=Fi(0) 0 
F?(i) d’Z> hi = ~fo 

1-o 
Ai = 2 

Fi(OM, 

F,(O) ’ 
and 4(4J = ( 1 _ e,j sin 4i. 

The form of Ai above ensures that equation (14) 
satislies the boundary condition, 0 = 1, at the inner 
cylinder’s surface. 

The function F&) is required to satisfy the nor- 
malizationcondition j,” Fi([) d[ = 1; the boundary con- 
ditions at infinity, F,(a) = Fi(co) = Ff’(oo) = . .. = 0; 
and those at the inner cylinder’s surface, F;(O) = 0. 

(ii) Outer boundary layer 
In analyzing the outer boundary layer, we employ a 

technique similar to the one employed in the inner 
boundary layer to obtain : 

with 

where 

1 m 

a”=G(O) 0 s 
G’(l) d{, b, = - G”(0)/G3(O). 

A&p) = G(W,/(&L - @,I, 

and 

A&,) = (t&L - 0,)/G(O). 

The function G(i) satisfies the normalization condition 
1,” G(i) dc = 1 and the boundary conditions G’(0) 
= G”(0) = 0, G(c.o) = G’(m) = G”‘(co) = ... = 0. 

Initial and matching conditions 
Before we proceed any further, it is convenient to 

rewrite the equations in terms of the global vertical 
coordinate z. For the inner and outer cylinders, z = 
-cos di and z = -R cos 4,-e, respectively. Thus 
equations (15) and ( 16) become : 

1 m 

ao=F,o 0 s 

K(0) 
F,f([) d< and b, = __ 

F:(O)’ 

The function F,(c) is required to satisfy similar 
conditions to those satisfied by F,(c). 

(iii) Plume 
The integral form of the conservation equations (11) 

is 

(0,-0J2d&, = 0. (17) 

We assume that the temperature profile can be 
approximated in the form 

Qp - 0, = A,(z,)G[ - t,/A,(z,)l (18) 

where A,,(zJ measures the half-width of the plume. 
Substitution of (18) into (17) leads to 

+c $ + % k Cti,(&, - O,)] = 0 (19) 
P 

where O,, is the temperature at the axis (5, = 0). Note 
that a new variable (Q.,) is introduced in equation (19). 
Consequently, an additional equation is needed. To 
this end, we substitute (18) into equation (llc), which 
was evaluated at 5, = 0, to obtain 

%+b,, (%x-@J2 = o 

*: 
(20) 

P 

-1 <z< 1 (21) 

-1 <z<R-e. (22) 

In order to integrate equations (19)-(22), adequate 
initial conditions need to be specified. The continuity of 
temperature and streamfunction require that 

$,=6,=0 at z=-1. 

This initial condition is of little use since equations (21) 
and (22) are singular at z = - 1. Asymptotic analysis 
reveals that 

*c - liZ(l + z)li* 
for z----l’ (23) 

T, N qyu-.i) J 

where C is an arbitrary constant. With some loss of 
generality, we assume in the above that ai = a, and 
bi = b,. Thus, by selecting a value for C, one can 
simultaneously integrate equations (21) and (22) for 
- 1 < z < 1. We shall specify later how C should be 
selected. 

In the region 1 < z < R -e, equation (21) is replaced 
with equations (19) and (20). The previous solutions of 
(21) and (22) provide the values of $, and 0, at z = 1. 
However, since a new variable, tYCL, is introduced, an 
additional initial condition is needed. The value of QcL 
at z = 1 is determined by requiring that the thermal 
energy carried by the inner boundary layer at z = 1 - 
will be equal to that carried by the plume at z = 1 +, i.e. 

s 

a, 

s 

m 
ui,b(6i_QJ d5i = up, ,(6, - 0,) d5,. (24) 

0 0 

HMT 29:5-D 
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In terms of the corresponding temperature profiles, we 
obtain 

&L(Z = 1’) = ; + I- t e,(z = 1-). 
( > 

(25) 

At this point, the equations can be integrated for any 
given value of C. In order to determine the value of C, 
we require that the point at which the plume intercepts 
the outer surface be a stagnation point. That is, 

u P,Z=O or O,,=O, at z=R-e. (26) 

Thus, the solution strategy for a given radii ratio (R) 
and eccentricity (e) is to select C, integrate the 
equations, obtain the value of up,= at z = R-e, and, if 
that is not zero, change the guess for C and keep 
iterating until u~,~ (z = R-e) = 0 is satisfied. Alterna- 
tively, one may choose C, integrate the equa- 
tions until the point at which up,= = 0, and find the 
corresponding R-e. Note that R and e do not appear 
independently, but only as the combination (R-e). 

The heat transfer which results in aP = 0.7293 and b, = 1.4291. 
Once the equations are solved, the heat flux and the 

total heat flow can be readily calculated. The total heat 
flow (Q,) can be expressed as : 

The numerical integration 
Equations (19H22) are integrated using a fourth- 

order accurate Runge-Kutta technique. As we in- 
dicated earlier, we start the integration process by 
guessing the value of C and subsequently calculating 
the location (R -e) at which plume velocity terminates. 
The integration procedure cannot start at z = - 1 since 
equations (21) and (22) have a singularity there. 
Consequently, the integration should begin at the point 
z = - 1 +E, where E > 0 is typically taken to be 
4 x 10W4. Sensitivity analysis reveals that the end result 
is not affected when E is varied by as much as two orders 
of magnitude. 

l Q, = 2Ra”2 eddz. (27) 

The conductive heat flow (QJ, in the absence of 
convection, is 

m+J(m2- 1) 1 
-1 

Q, = 27t log R+log--- 
&r2-l)+j(m2+R2-1) 

(28) 

where m = (R2 - e2 - 1)/2e. Consequently, the Nusselt 
number (Nu,,) predicted by the boundary-layer theory 
is : 

NU BL = QJQ, (29) 

The velocity and temperature profiles 
In our calculations, we employ similar functions for 

‘the temperature profile in theinner and outer boundary 
layers, i.e. Fi = F, = F. The various profiles used and 
the corresponding values of the constants a, = a, = a 

and bi = b, = b are given in Table 1. Additionally, we 
calculate Q, for the special case of R + cc. The latter 
corresponds to the case of a cylinder imbedded in an 
infinite porous medium. This case is singled out both for 
its practical importance and for the availability of 
approximate solutions in the literature [lo] with which 
we can compare our results. For example, Cheng [ 10) 
calculated the heat flow associated with a cylinder 
imbedded in an infinite medium. By neglecting the 
radial component of the gravity vector, he was able to 
construct a similarity solution. His result is quoted as 
the last entry in Table 1. 

As is evident from Table 1, the actual values of a and b 
are not very sensitive to the selection of a specific profile 
F. The exponential profile F(c) = exp (- <) leads to the 
best agreement with Cheng’s [lo] solution and 
therefore it was used in our subsequent calculations. 

For the plume, we use the profile [9] : 

G(&,) = 1 cos (5,) exp CO.25 - @ 
Jn (30) 

The results of the computations are summarized in 
Fig. 3 where C is depicted as a function of (R - e). 

5. RESULTS AND DISCUSSION 

5.1. Temperature and velocityjelds 
The core temperature (t?,) and streamfunction ($c) 

are depicted in Figs. 4 and 5 as functions of the vertical 

Table 1. Values of a, b and Q,(R -+ m) obtained for various temperature profiles 

F(5) 

a b &- for R+co 
JRa 

1. ew(-i) 0.5 -1 2.828 
2. f(2+i)exp(-0 0.5417 -0.75 3.399 
3. Two-layer profile [S] 0.5376 - 1.7232 3.448 

g-$1+&513; O<[<l 

&exp(-5+1) 5 > 1 
4. Ref. [lo] 2.513 
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C 

o.io:. 16 

(I?- I?) 

FIG. 3. The variation of the constant C as a function of (R - e). 

coordinate (z) for a concentric annulus (e = 0) with 
radii ratio R = 2. The solid lines represent the results 
obtained by integrating equations (19H22). The 
dashed lines represent the asymptotic solution for 
z + - 1+ [equation (23)], and the symbols represent 
the finite-difference numerical solution of the DOB 
equations (1) for Ra = 1000 [6]. Note the qualitatively 
good agreement between the boundary-layer solution 
(solid lines) and the numerical simulation (symbols). 
The core streamfunction (Fig. 4) starts from a zero value 
at z = - 1, attains a maximum at about z = 0.5, and 
decreases back to zero at z = R = 2. The core 
temperature 8, (Fig. 5) starts from zero at z = - 1 and 
increases monotonically with z. At z = R = 2, it attains 
the same value as the plume’s centerline temperature. 

i.oo m 

FIG. 4. The variation of the core temperature (0,) as a function 
of the vertical coordinate z for a concentric annulus with radii 
ratio R = 2. The solid line corresponds to the boundary-layer 
solution, the dashed line represents the asymptotic solution 
valid for z + - 1 +, and the symbols are the results of a finite- 

difference numerical simulation for Ra = 1000. 

O.Ot.~‘.l.~~.l~...l..~.l...~~....l + 
-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 

2 

FIG. 5. The variation of the core stream function (+,) as a 
function of the vertical coordinate(z) for a concentric annulus 
of radii ratio R = 2. The solid lines correspond to the 
boundary-layer solution, the dashed lines represent the 
asymptotic solution valid for z + - 1 ‘, and the symbols are 
the results of a finite difference numerical simulation for 

Ra = 1000. 

The core temperature (0,) never reaches the 
temperature (0 = 0) of the outer surface. 

We note in passing that an exact relationship 

between $, and Bc can be obtained for - 1 < z < 1 in 
the form 

c@-“’ = &(l -e,). (31) 

Equation(3l)isinexcellent agreement(not shown here) 
with the results depicted in Figs. 4 and 5. We did not find 
an explicit analytical solution for Bc = 6,(z) and 
$, = $c(z) for general values of a and b. 

5.2. Heat transfer 
Next, we use the boundary-layer theory in order to 

calculate the Nusselt number Nu,, as a function of the 
Rayleigh number [equation (29)]. The results are 
depicted as dashed lines in Figs. 6-9. In Fig. 6, we show 
the results for a concentric annulus with radii ratios 
R = 21j4, 2’j2, 2,4 and 16. The symbols represent the 
results of a finite-difference numerical simulation [ 11. 
The agreement between the boundary-layer theory and 
the numerical simulation is very good for Nu,, > 1.4. 
In Fig. 7, we compare the Nu,, with experimental data 
obtained by Caltagirone [l] for a concentric annulus of 
radii ratio R = 2. Note the good agreement between the 
boundary-layer theory and the experimental observa- 
tions for 1.4 < Nu,, < 2. For higher values of the 
Nusselt number, the deviation between the experi- 
mental data and the theoretical results increases. The 
reason for this deviation will be discussed in the next 
section. 

In Figs. 8 and 9 we depict the Nusselt number as a 
function of the Rayleigh number for eccentric annuli 
with positive and negative eccentricities, respectively. 
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5 

4 

3 

NU 

2 

1 
t 

Ra 

FIG. 6. The Nusselt number (Nu) depicted as a function of the 
Rayleigh number (Ra) for a concentric annulus of radii ratios 
R = 21’4, 2r12, 2, 4 and 16. The solid line represents the 
uniformly valid correlation [equation (33)], the dashed line 
corresponds to the results of the boundary-layer theory, and 
the symbols represent numerical data from ref. [l]. The 
shaded area corresponds to a region in which the flow is not 

two-dimensional. 

The various symbols are the results of two- 
dimensional, finite-difference numerical simulation 

[6]. The agreement between the boundary-layer theory 
and the numerical simulation is very good for lel < 0.6. 
As the eccentricity increases, however, the numerical 
data starts deviating from the boundary-layer results. 
Note that for lel > 0.6, the gap between the outer and 
inner cylinders becomes very small. Thus, the deviation 
between the numerical simulation [6] and the 
boundary-layer theory may be attributed to the fact 

Nu 

Ra 

FIG. 7. The Nusselt number (Nu) as a function of the Rayleigh 
number (Ra) for a concentric annulus of radii ratio R = 2. The 
solid and dashed lines represent respectively the uniform 
correlation (33) and the boundary-layer theory. The symbols 

represent experimental data [l]. 

3 

Nu 

Ra 

FIG. 8. The Nusselt number (Nu) as a function of the Rayleigh 
number (Ra) for an eccentric annulus of radii ratio R = 2 and 
eccentricity e = 0.2,0.4,0.6 and 0.8. The solid and dashed lines 
represent, respectively, the uniformly valid correlation (33) 
and the boundary-layer theory. The symbols represent 

numerical solution [6]. 

that the Rayleigh numbers for which we possess 
numerical data [6] are not sufficiently large to ensure 
distinct inner and outer layers. 

The results obtained for the boundary-layer theory 
and the results of the numerical simulation were used to 
construct a correlation for the heat flow Q, in the form : 

Q, = 27rR~~~~{0.35-0.11 exp [-0.39(R-e-l)]}. 

(32) 

The above value of Q, can be used to calculate Nun, in 

Ra 

FIG. 9. The Nusselt number (Nu) as a function of the Rayleigh 
number (Ra) for an eccentric annulus of radii ratio R = 2 and 
eccentricities e = -0.2, -0.4, -0.6 and -0.8. The solid and 
dashed lines represent, respectively, the unifcrmly valid 
correlation (33) and the boundary-layer theory. The symbols 

represent numerical solutions [6]. 
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accordance with equation (29). At this point, we possess 
the asymptotic limits for the Nusselt number for large 

and small Rayleigh numbers, i.e. as Ra + 0, Nu + 1 and 
as Ra + K, Nu + Nu,,. Using a technique devised by 
Churchill and Usagi [l 11, the above two limits can be 
used to construct an approximation for all Rayleigh 
numbers in the form : 

NL, = (1 +NU~L4.se2)1/(6-4.5e2). (33) 

The results obtained using this correlation are depicted 
by solid lines in Figs. 6-9. The deviation between (33) 
and the numerical data is smaller than 8% for all the 
cases examined. 

6. THE RANGE OF VALIDITY 

OF THE RESULTS 

The theoretical results presented here are based on 
the assumption that the flow is two-dimensional and 
steady. This is the case only for certain values of the 
Rayleigh number. Once a certain critical value of the 
Rayleigh number is exceeded, the flow becomes three- 
dimensional and oscillatory. For the case of the 
concentric annulus, we use Caltagirone’s results [l] to 
show the region (shaded) in Fig. 6, in which the flow is 
not two-dimensional. Unfortunately, similar data for 
the eccentric annulus is not available yet. The 
bifurcation into three-dimensional convection also 
explains why beyond a certain Rayleigh number the 
experimental data in Fig. 7 starts deviating from the 
theoretical results. Clearly, correlation (33) is not valid 
in the three-dimensional convective regime (shaded 
area in Fig. 6). Nevertheless, the correlation (33) can 
provide a lower bound for the heat transfer in the three- 
dimensional flow regime. 

Another matter of concern is the validity of the DOB 
equations for large Rayleigh numbers. Darcy’s law is 
considered to be valid for Reynolds numbers Re < 10, 
where Re = &d/v. In the foregoing equation, d is a 
characteri‘stic dimension of the porous media (i.e. pore 
or particle diameter) and U, is the Darcian velocity. 
In our case, the maximum velocity is attained in 
the boundary layer and can be estimated from U, = 
ig/Y( T, - T,) (1 - B,)/vF(O). Consequently, we conclude 

that the DOB equations are valid for 

Ra<20Pr$ (34) 

where Pr is the Prandtl number. For example, in the 

case of air (Pr - 0.7) and ri/d - 102, the DOB equa- 
tions will be valid for Ra < 1400. 

7. CONCLUSION 

A boundary-layer technique was used to solve for the 
temperature and flow field as well as for the heat 
transfer in an eccentric horizontal annulus containing 
saturated porous media. The results agree favorably 
with numerical simulations and with experimental 
observations and enable us to construct a heat transfer 
correlation which is valid in the range of validity of the 
DOB equations and as long as the convective motion 
remains two-dimensional, bicellular and steady. 
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CONVECTION A GRAND NOMBRE DE RAYLEIGH DANS UN ESPACE ANNULAIRE 
EXCENTRIQUE, HORIZONTAL ET CONTENANT UN MILIEU POREUX SATURE 

R&sum&-La convection thermique B grand nombre de Rayleigh dans un espace annulaire excentrique. 

horizontal, contenant un milieu poreux saturt, est itudiCe $ l’aide d’une technique de couche limite. Les 
risultats contiennent une description deschamps d’bcoulement et de tempgrature aussi bien qu’uneexpression 
du nombre de Nusselt en fonction du nombre de Rayleigh. du rapport des rayons et de I’excentricitt. 
L’expression est valable pour tous les nombres de Rayleigh tant que 1’Ccoulement est bidimensionnel, 
bicellulaire et permanent. Les rtsultats obtenus ici sont cornparts et ils s’accordent avec les solutions 

num&iques et avec les donnees exptrimentales. 

KONVEKTION BEI GROSSEN RAYLEIGH-ZAHLEN IN EINEM HORIZONTALEN, 
EXZENTRISCHEN RINGRAUM, WELCHER GETRiiNKTE POR&E MEDIEN ENTHWLT 

Zusammenfassung-Die thermische Konvektion in einem waagerechten, exzentrischen Ringraum, welcher 
ein durchtrinktes por(ises Medium enthllt, wird mit Hilfe einer Grenzschicht-Technik fiir den Fall groBer 
Rayleigh-Zahlen untersucht. Die Striimungs- und Temperaturfelder werden beschrieben, aul3erdem wird eine 
Korrelation der Nusselt-Zahl in Abhgngiakeit von der Ravleigh-Zahl, vom VerhLltnis der Radien und von der 
Exzentrizitlt mitgeteilt. Letztere KorFeiation ist fiir alie Rayleigh-Zahlen giiltig, solange die Striimung 
zweidimensional, bizellular und stationgr ist. Die vorgelegten Ergebnisse werden mit numerischen Simulatio- 

neu und mit Versuchsdaten verglichen, wobei sich eine recht gute ubereinstimmung ergibt. 

KOHBEKIJMII IIPM 6OJIblIIMX YMCJIAX P3JIEII B TOPM30HTAJIbHOM 
3KCuEHTPM4ECKOM KOJIbqEBOM KAHAJIE, COAEPXAUEM HACbIIlJEHHYIO 

I-IOPMCTYIO CPEAY 

AimoTauiia-B npe6nuxeHnn norpaHnsHor0 CJIOIl a3y’iaeTCa TcnJIOBaa KOHBcKullR npM 6OJlbJlniX 
VMC,,aX P3,Ie?, B rOpH3OH~aJIbHOM 3KCueHTpH’IeCKOM KOJIbueBOM KaHaJIe, COLIepxameM HaCbImcHHyW 

“OpHCTyH) cpeny. Ha&IeHbI “Ona CKO~OCT’H M FSmepa-rypb, M BbIpameHHe LWl WiCJla HyCCejlbTa KBK 

(PyHKuMn 9ucna Psnea, 0THomemia panwycoe n 3KcueH-rpHcHTeTa. YKasaHHoe ebrpaxeeae cnpaeennaeo 
a TOM neanasolie YMcen Psnea, a KO~O~~M TeveHne flBnfleTcz4 LIByMepHbIM, neyxnYeHcrbrM A ycToFiwi- 

BblM. nOJ,yqeHHbIc pe3yJIbTaTbl XOpOmO COBIIWNOT C SHCJIeHHbIMA paC4eTaMH A 3KCnepHMeHTaJIbHblMA 


